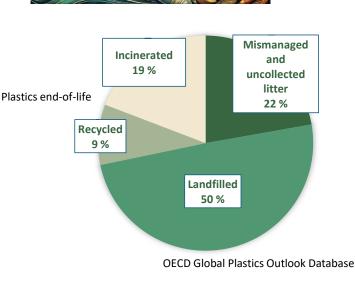


Suberin-based dispersions for barrier coating

Martti Toivakka^{1*}, Chunlin Xu¹, Adina Anghelescu-Hakala², Liqiu Hu¹, Rajesh Koppolu², Roosa Hämäläinen², Heimo Kanerva², Tapani Nick¹, Risto Korpinen³, Pekka Saranpää³, Umair Qasim⁴, Henrikki Liimatainen⁴

> ¹Åbo Akademi University, Turku, Finland ²VTT Technical Research Centre of Finland Ltd, Espoo, Finland ³Natural Resources Institute Finland (LUKE), Helsinki, Finland ⁴University of Oulu, Oulu, Finland



"The plastic problem"

- Annual plastic waste generation*:
 - Europe: 30Mt, 120 lbs/person
 - USA: 34Mt, 232 lbs/person
- Globally only ~9% of plastics is recycled
- Food packaging accounts for almost 60%
- → Growing demand for recyclability and sustainability

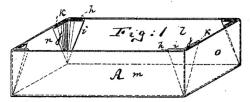
*Kara Lavender Law et al. Sci. Adv.6, eabd0288(2020).DOI:10.1126/sciadv.abd0288

Laboratory of Natural Materials Technology

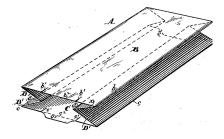
Why paper-based packaging?

- Paper recycling rate is high: Europe 71%¹, USA 68%²
- Up to 25% of plastics in packaging can be replaced with fiberbased packaging (35 Mt globally)³
- Plastic substitution by paper ("paperization") driven by:
 - Major brand owners' and retailers' commitments to "All packaging" recyclable, reusable, (compostable)"
 - Legislation (SUPD⁴, PPWR⁵, Indian plastic ban, etc.)
 - EPR⁶ modulation
 - Regional consumer preferences

¹CEPI ⁴Single Use Plastics Directive, EU ⁵ Plastic and Plastic Waste Regulation, EU ² American Forest & Paper Association ⁶ Extended Producer Responsibility fees, EU ³StoraEnso, Reaching for Renewables: Five Reasons for Surging Demand for Sustainable Packaging Materials, 2023 Laboratory of Natural Materials Technology Martti.Toivakka@abo.fi



Fiber-based packaging (=paper- and paperboard-based packaging)



- Barrier coatings are essential, but conventional barrier materials often rely on synthetic polymers, which have limited recyclability and biodegradability
- → Need for environmentally friendly alternatives has led to research into biopolymer-based coatings
- Key challenges include ensuring:
 - effective barrier properties (moisture, oil/grease, oxygen)
 - compatibility with existing converting machinery
 - heat sealability
 - cost-competitiveness
- ... all while preserving recyclability

Paperboard tray, US Patent 170'991, 1875

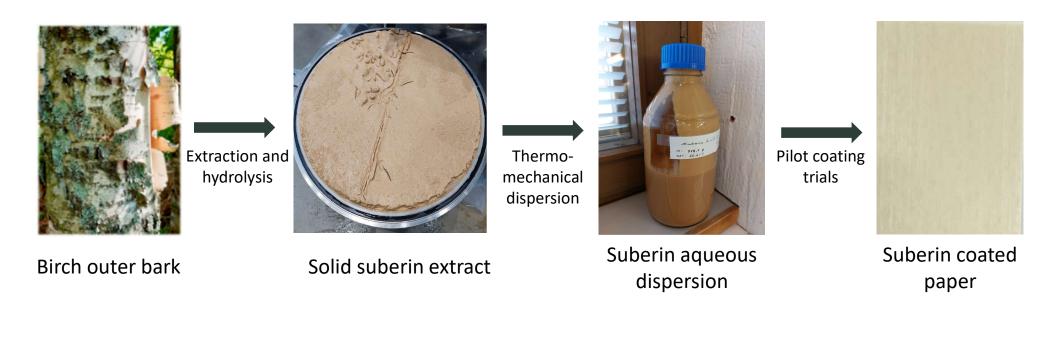
Paper bag, US Patent 405'616, 1889

Laboratory of Natural Materials Technology

Objectives

- Understand the potential of suberin*, a natural polyester found in birch outer bark, as an alternative barrier material:
 - Isolate suberin from birch outer bark
 - Characterize the chemical properties of suberin
 - Develop approaches for creating suberin dispersions
 - Coat and compare to commercial reference barrier coatings

'tuokkonen"/"rove"



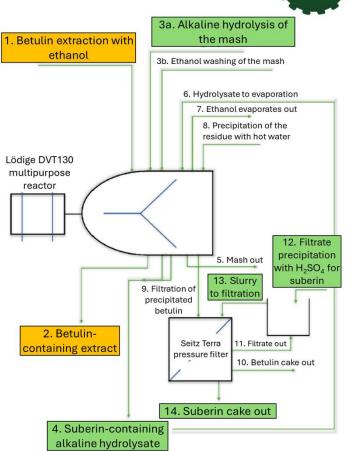
Laboratory of Natural Materials Technology

Overview of the work flow

Åbo Akademi University

Suberin isolation from birch outer bark

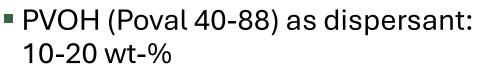
- Ethanol-water fractionation + alkaline hydrolysis in laboratory and pilot scale
- Molecular weight*: 385-430 g/mol
- Melting point: 55-75 °C
- Chemical composition:
 - Fatty acids and their derivatives, which form a crosslinked hydrophobic network:


Sample		Sum					
	Short chain fatty acids	Long chain fatty acids	Triterpenyl alcohols	Dimers 1	Dimers 2	Trimers	(mg/g)
Suberin.1	11.9	564.7	72.6	32.7	9.9	9.8	701.7
Suberin.2	28.6	868.6	14.7	28.4	9.5	19.2	969.0

Phenolic and polyaromatic compounds

*Measured with size exclusion chromatography (SEC)

Laboratory of Natural Materials Technology


Martti.Toivakka@abo.fi

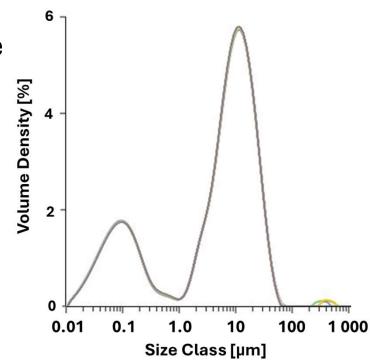
Korpinen, R. I. et al., Molecules 2019, 24 (23), 4391

Suberin dispersion

- Thermomechanical dispersion:
 - Suberin is heated to 75 °C to melt it
 - Preheated (70 °C) 7% aqueous PVOH solution added stepwise while mixing
 - Dilution with 50 °C water to final solids content of 20-30%
 - Post-treatment with Ultra Turrax homogenization @12-14000 rpm for 15 minutes
 - Filtering through fine metallic sieve

Molten suberin at 75 °C

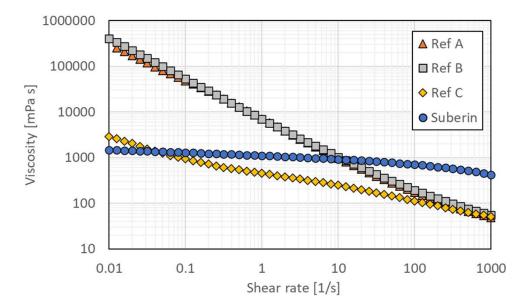
Laboratory of Natural Materials Technology



Typical suberin dispersion properties

Laboratory of Natural Materials Technology

- Brownish color
- Volume-based particle size 1-100 µm
- Brookfield viscosity (100 rpm) 1390-2830 mPa s
- pH 4.0-6.5
- Conductivity 325-380 µS/cm



Materials

- Substrates:
 - Paper (UPM Prego, barrier base paper for packaging of baked goods and food), 53 g/m²
 - Paperboard (MetsäBoard Prime FBB Bright), 202 g/m²
- Barrier dispersions:
 - Suberin dispersion stabilized with 20 wt-% PVOH, total dispersion solids content 20%, pH 6.5
 - Three commercial reference barrier dispersions:
 - Ref A and Ref B: styrene acrylate-based dispersions, solids content 50%, supplied by CH-Polymers Oy, Finland
 - Ref C: TEKNOPACK MJ 09, solids content 45%, supplied by Teknos Group Oy, Finland

Laboratory of Natural Materials Technology

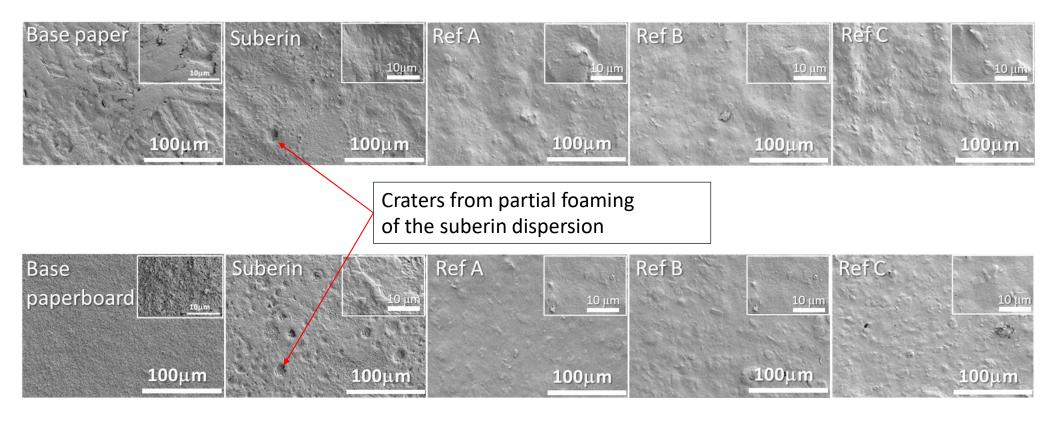
Martti.Toivakka@abo.fi

10

VTT SUTCO pilot line:

- 500 mm web width
- Coater speed 5-10 m/min
- 3 x IR drying: surface temperatures after each: 60/70/90°C
- Hot air drying: set points 130-150°C, actual temperature 110-130°C
- Rod metering, nominal wet coating thickness 32 µm (Suberin) / 28 µm (Ref A/B/C)

	Dry coat weight (g/m²)					
	Paper	Paperboard				
Suberin	10 ± 1.0	13.4 ± 3.8				
Ref A	21 ± 0.3	29.5 ± 0.8				
Ref B	19 ± 1.0	28.5 ± 0.8				
Ref C	15 ± 0.3	26.1 ± 1.0				



Laboratory of Natural Materials Technology

SEMs of uncoated and barrier-coated substrates

Laboratory of Natural Materials Technology

Martti.Toivakka@abo.fi

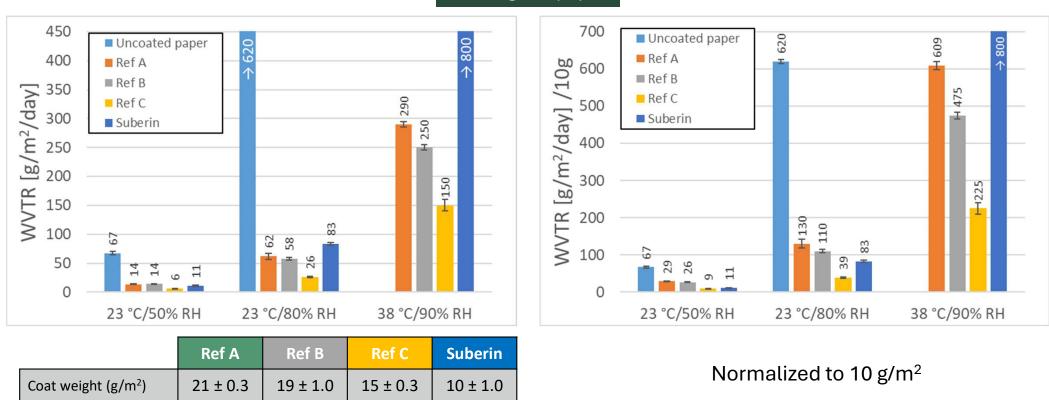
AATER

Barrier testing

- Air permeability (L&W SE-166) below the detection limit (0.003 µm/Pa s) for all the coatings
- KIT test (TAPPI T 559)
- Grease barrier ASTM F119-82 standard using olive oil at 40 °C
- Heptane vapor transmission test: cup test at 23 °C, 50% RH

	Coatings on paper					Coatings on paperboard				
Barrier coating	Base paper	Ref A	Ref B	Ref C	Suberin	Base paperboard	Ref A	Ref B	Ref C	Suberin
Coat weight (g/m ²)	-	21 ± 0.3	19 ± 1.0	15 ± 0.3	10 ± 1.0	-	29.5 ± 0.8	28.5 ± 0.8	26.1 ± 1.0	13.4 ± 3.8
КІТ	2	12	12	8	6	5	12	12	12	12
Grease barrier* (hours)	< 0.5 h	72-168 h	24-168 h	24-168 h	0.5-5 h	3-7 h	150-168 h	72-168 h	24-168 h	24-168h
HVTR (g/m²/day)	100 ± 15	69 ± 1	93 ± 2	83 ± 7	15 ± 1	No barrier	370 ± 30	290 ± 10	420 ± 10	Below detection limit

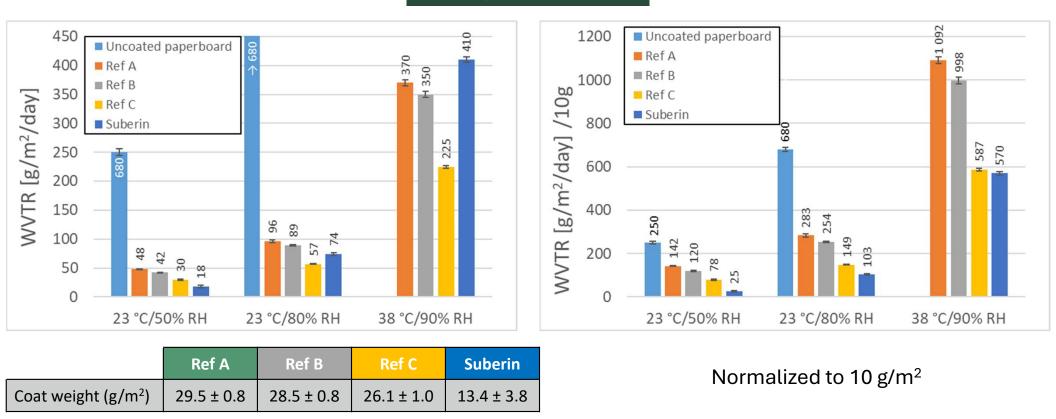
*Starting value indicates failure of the 1st sample, the end value failure of the 5th sample. Test stopped at 168 h.


Laboratory of Natural Materials Technology

Water vapor transmission rate

Coatings on paper

ASTM standard (E96/E96 M-05), 3 parallel measurements


Laboratory of Natural Materials Technology

Water vapor transmission rate

Coatings on paperboard

ASTM standard (E96/E96 M-05), 3 parallel measurements

Laboratory of Natural Materials Technology

Conclusions

- Solvent-free extraction of suberin is possible from renewable source birch bark
- PVOH can be used to prepare coatable suberin dispersions
- Barrier performance of suberin is promising:
 - Suberin coatings on paperboard show better WVTR & HVTR than the reference dispersions
 - On paper, the WVTR at 50% RH is comparable to the best reference dispersion Ref C, but at higher humidity the suberin barrier is reduced
- Current and future work:
 - Alternative stabilizers to replace PVOH
 - Alternative dispersion techniques
 - Smaller particle size
 - Higher solids content
 - Convertability, foldability, creasability, sealability etc.
 - Cost analysis for scalability

Laboratory of Natural Materials Technology

Thank you!

Questions, comments, suggestions, objections?